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Abstract. An approach used to calculate the conductivity of small electrical networks in the 
presence of a magnetic field is presented. Boundary conditions are taken into account during 
the calculations of the Green function. The conductivity is determined from the Kubo 
formula exactly. The roles of inelastic scattering and topology of the system in a quantum 
interference process are considered. 

1. Introduction 

Recently, much interest has been devoted to the transport properties of small metallic 
systems (see [ l ]  and references therein; see also [2]) .  The size of the samples is smaller 
than the inelastic scattering length of electrons. In such a case, quantum interference 
plays a crucial role in the electronic transport. There is a lack of self-averaging of physical 
quantities. Results differ from sample to sample; they depend on external conditions 
(the electrical and magnetic field). Theoretical approaches to the problem are usually in 
the framework of weak localisation [2] ,  in which electron scattering due to impurities 
and quantum interference determine the transport properties. 

In thepreserit work, we focusour attentionon apure system (i.e. without impurities). 
Scattering occurs only on nodes of the network. We investigate the role of the geometry 
of the electrical network in quantum interference processes. In § 2, we present our 
approach which is based on the Kubo formula for the conductivity. Further calculations 
are analytical and exact. In § 3, this approach is used for electrical networks with various 
geometries: a single ring, a ring with attached leads, a single wire, and a wire with an 
attached bubble. Although our model is very simple, we think that it may be useful in 
understanding experimental data obtained on very small metallic systems [ 11. 

2. Conductivity of a confined system in the Boltzmann approximation 

We investigate the dependence of the conductivity for electrical networks with different 
geometries. It is assumed that the system consists of thin pure wires. Impurities and 
defects play no role, and the elastic scattering length I, for electrons is much larger than 
the inelastic scattering length li,. In such a case, electrons can be considered as quasi- 
particles with a lifetime z = Zi,/uF ( uF is the Fermi velocity), and the conductivity 0 may 

0953-8984/89/122217 + 08 $02.50 @ 1989 IOP Publishing Ltd 2217 



2218 B R Bulka 

be determined in the Boltzmann approximation. From the linear response theory, one 
can obtain 

where 

J(r,  r ’ ;  E) = -2(d/az)(d/az){Im[G(r, r’;  E)]}Im G(r’, r; E )  

+ (d/dz){Im[G(r, r ’ ;  E)]} (a/dz’){Im[G(r‘, r; E)]} 

+ (d/dz’){Im[G(r, r ‘ ;  E ) ] }  (d/dz){Im[G(r’, r;  E)]}. 

Here m denotes the mass of an electron, Vthe volume of the system, EF the Fermi energy 
and f the Fermi distribution function. The derivatives are taken in the direction of an 
electric field (the z direction). Gis the one-particle Green function, which in the presence 
of a magnetic field satisfies the following equation: 

[(h2/2m){ -iV, - [2~/(hc/e)]A}~ - ( E +  ih/z)]G(r, r ‘ ;  E + ih/z) = S(r - r’) .  (2) 
A denotes a vector potential of the magnetic field. 

In order to simplify calculations, we assume that the perpendicular cross-section of 
wires is smaller than the de Broglie wavelength of electrons. It reduces the problem to 
one dimensional on each wire. Under the present considerations, we also neglect the 
thermal distribution of electrons around the Fermi energy [3]. Thus the conductivity is 
determined for electrons exactly at the Fermi level. We wish to study the role of quantum 
interference in the transport process in electrical networks with different topologies and 
when electrons are inelastically scattered. The damping of electron waves is described 
by l,,, and this is the only parameter in this approach. 

In general, the Green function G is a linear combination of independent solutions of 
the homogeneous differential equation (2). One can write 

G(z, z ’ )  = [A(z’)  cos(kz) + B(z’ )  sin(kz)] exp(iy,,,) (3) 
where k is a complex wavevector, i.e. k = k‘ + i k  and E = h2kt2/2m, k = l/lin. The 
phase shift yrrJ = (e /hc)  S A  * d l  results from the circulation of the vector potential A 
along the path of the electron between the points z and z’.  The coefficients A and B are 
determined from the boundary conditions. The particle conservation law implies that G 
has to be a continuous function. Let the current source point z’ lie between the node 
points a and b (a G z G z’ G b). If we denote G<(z‘, 2‘) =g,, and G<(a, z ’ )  = 
g, exp(iy,,,), then (3) can be rewritten as 

C<(z ,  z ’ )  = (g, cos(kz) + [gz. exp[(iy,,,) -g, cos(kz’)] 

x sin(kz)/sin(kz’)} exp( -iy,,). 

The second condition is 
(4) 

where the summation is over all wires, which are connected to the node point a ,  and the 
derivative is taken along the wires in the direction to the node point a. The condition (5) 
ensures current conservation at each point of the system. The discontinuity in the 
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11 I 12 Figure 1. Systems considered: (a) a single 
ring in a magnetic field; ( b )  a ring with two 
attached leads; (c) a wire with a bubble. 

1 2 3 

( C )  

derivative of the Green function at the current source point z’ is included in ( 5 ) .  We 
assume free boundary conditions at the ends of wires. The above relation (5) is fulfilled 
in this case as well. (One could assume perfect contacts at the ends with G(z ,  z’)  = 0. )  

Conditions (4) and ( 5 )  give us a set of equations for the functionsg, at the node points 
(or at the wire ends) 

The sum is taken over the nearest-neighbour nodes b (the current source point z’ is 
included as well) connected to a. lab is the length of the path between the points a and b. 

Solving the set (6) of linear equations, one finds gu for all nodes and then the 
one-particle Green function (4) for the electrical network. It is easy to calculate the 
conductivity (1). One calculates the integral (1) analytically as the integrand is a linear 
combination of complex trigonometric functions. 

3. Results 

3.1. A single ring 

An illustrative example is a ring of circumference 1 in a magnetic field B (figure l(a)). 
The nodes are at the initial point 0 and at the current source point 2’. Equations (6) for 
g at these points are 

go{cot(kz’) + cot[k(l- z’)]} - gz, exp(iqz’)/sin(kz’) 

-gz8 exp[ - iq( l -  z’)]/sin[k(l- z ’ )]  = 0 

g,,{cot(kz’) + cot[k(l- 271) -go  exp( -iqz’)/sin(kz’) 
(7) 

-g2, exp[iq(l- z’)]/sin[k(l- z ‘ ) ]  = -l/k. 

If the magnetic field B is perpendicular to the ring, then the magnetic flux Q, enclosed in 
the ring is Q, = BS and the shift of the phase of the electronic wave circulating along the 
ring per unit length is Q, = 2 n ~ , / ~ , ~ l .  (q0 = hc/e and S denote the one-electron flux 
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quantum and the area of the ring, respectively.) From (7) and (4), one obtains the Green 
function 

G<(z ,  2’) = -exp[iq(z - z’)] {sin[k(l- 2’ + z)] + exp( -iql) sin[k(z’ - z ) ] }  

x {2k[cos(kl) - cos(ql)]}-1. (8) 
Next, we substitute G in (1) and calculate the integral. We use the symmetry relation 
for the Green function, which states that, if z > z ’ ,  then G’(z, z ’ )  = G<(z’, z ) .  The 
result is 

cr = (2e2/h)l,,{sinh(l/l,,) [cosh(l/l,,) - c0s(2nq/q0) cos(k’l)] + sin(2nq/q0)sin(k’l) 

x [ -cosh(l/lin) + ( l in / l>  s inh(~/lin)II/ l~lz (9) 

where 

I W / 2 = 4 / ~ ~ ~ ( k Z )  - c o s ( ~ ~ G Q ) / ~ ~ ) I ~  = 2  cos(2k’l) + 2  ~0~h(21/1,,) 

- 8  COS(^'^) cosh(l/l,,) C O S ( ~ J T ~ / ~ ~ )  + 4 c0s2(2;29/90). 

If the inelastic length is smaller than the circumference (l,, l ) ,  then the conductivity 
has the well known Boltzmann dependence cr = (e2/2h)l,,. In the opposite limit (l,, % I ) ,  
the smearing of electronic levels is smaller than the distance between them. There are 
strong resonance oscillations of the conductivity in the magnetic field. The amplitude of 
the oscillations is about (e2/2h)(ltn/l), and the minimal value of cr is approximately (e2/ 
2h)l. Because interference processes are absent in this case (there is no scattering on 
impurities or contacts), the period of oscillation is qo = hc/e. 

3.2. A ring with two attached leads 

Let us consider a ring with two attached leads (figure l(b)).  The lengths of the wire on 
the left-hand side and on the right-hand side of the ring are l1 and 1 2 ,  and in the upper 
and the lower branch of the ring 1, and 1-, respectively. We analyse the part of the 
conductance coming from the ring only, because we want to understand the role of the 
attached leads in the system. If the current source point z’ lies on the upper branch, then 
equations (6) for g at the nodes on the ring are 

g2[cot(kz’) + cot(kl-) - tan(kl,)] -gz, exp(iqz’)/sin(kz’) 

-g3 exp(-iqd-)/sin(kl-) = O 

gz,{cot(m’) + cot[k(l+ - z’)]}  - g 2  exp( - iqz‘)/sin(kz’) 

-g3 exp[iq(l+ - z’)]/sin[k(l+ - z’)] = -l /k 

- g3{cot[k(l+ - z’)] + cot(k1-) - tan(&)} -gz, exp[ - iq( l+ - z’)]/sin[k(l+ - z’)] 

- g, exp(iqz’)/sin(kl- ) = 0. 

It is worth noting that, if the attached wires are very long (Il, 1 2 +  a), then they act as 
inelastic scatterers (in equation (lo), tan(kl,,,) + i) (compare [3,4]). An electron leav- 
ing the ring may spend much time in the attached wire. 

Next, the Green function G and the conductance % = cr/l are calculated. Because 
the analytical formula is rather complicated, we present the conductance in a graphical 



Magnetoconductance of small electrical networks 2221 

1 

v1 
t - 
3 
I 

b 
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Figure 2. Dependence of the conductance % on the flux of a magnetic field for a ring with 
two attached leads: (a )  lI = 1 2 ,  I ,  = 1- = 5 ,  I, ,  = 100, k' = n/2 with different I ,  (-, 1, = 

with different I,, (-, I,, = 100. , --- 3 1 "  1 = 20. > - . -  , 1 I" = 10; ---, I,, = 2; . . . . , 
1000; -- -, I I  = 50; - .  -, lI = 20; . . . , I ,  = 0 ) ;  ( b )  11 = 12 = 1000, I+ = I -  = 5 ,  k' = ~ / 2  

I , ,  = 1). 

form in figure 2. Figure 2(a) shows the dependence of % on the magnetic flux q for 
attached leads of various lengths. The full curve corresponds to '3 for very long leads 
( 1 1 ,  l 2  S I,,). It is very close to the transmission of an electron through the ring with two 
infinite leads and without inelastic scatterings obtained already previously [4]. For 
shorter leads (II, l2  < l,,) the position of the maximum and the amplitude of % may be 
changed. It is represented in figure 2(a) by three other curves. We wish to point out that 
for the ring without leads (II = l2  = 0) the conductance is related to the transmission 
between two points (the contact points) of the ring, rather than to the conductivity along 
the ring (equation (9)). 

Figure 2(b) shows the dependence of the conductance '3 on the inelastic scattering 
length ZIn. With decreasing I,, the amplitude of oscillations of % decreases. The maximum 
of % may be shifted as well. One can see this for the full, broken and chain curves in 
figure 2(b), where the two maxima of % (for I,, = 100 and 20) are transformed into a 
single maximum (for l,, = 10). Thus the harmonics of oscillations change with l,n. The 
average value of % is almost constant up to I,, = 1. For I,, shorter than the size of the ring 
(lIn < l,, 1- ) ,  the oscillations are completely damped, and the value of (4 is reduced (see 
two lowest curves in figure 2(b)). 

For a different geometry of the ring (a different position of the leads attached to the 
ring) the shape of the conductance % as a function of the magnetic flux Q, may be different 
from that presented in figure 2 as a result of different interference conditions (see also 
[4]). The basic period of oscillations is hc/e; however, in many cases the second harmonics 
(the hc/2e component) dominates. In all situations, one finds familiar features for the 
conductance as a function of I,, as has been presented above. 

3.3. A wire 

Calculations for a wire are very simple. The Green function has the form 
G<(z, 2') =  COS[^(^- z ' ) ]  cos(kz)/k cos(k1). 

Here 1 denotes the length of the wire. The conductance % is given by 
'3 = a/l = (e2/h)(li,/l){sinh(2Z/1,,) - ( & , / I )  

X [coth(2l/Iin) - 1])/[~0~h(2I/li,) -  COS(^'^)]. 
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Let us now attach two leads with a different potential level to the ends of the 
considered wire. For 0 s z d z r  d 1 the Green function is 

G'(z, 2') = {cos[k(l- z ' ) ]  cos(kz) - ib sin[k(l- z r  + z ) ]  

+ 6' sin[k(l- z ' ) ]  sin(kz)}/kW (13) 
where W = (1 + S) sin(kl) + 2iS cos(kl). 6 is the ratio of the Fermi wavevectors in the 
attached lead and in the wire, i.e. S = k;/k' = v(EF - V ) / E F .  We assume that the 
system is made up of conductors, and thus the potential step V is not too high (i.e. 
EF - V > 0). The conductance can be expressed by 

% = (e2/h)(l,,/41)[I[46* + (1 + S2)'] sinh(21/1,,) + 4S(1+ 6 ' )  cosh(21/1,,) 

- (ljn/21){(1 + 62)2[1 - ~0~h(2l / l i , ) ]  

- 26(1 + S 2 )  ~inh(21/l,,)}lj/(W/~. 

The conductance is related, in this case, to transmission through a small potential barrier 
in the presence of inelastic scatterers. 

3.4.  A wire with an attached bubble 

Now we consider an interesting case: a wire with an attached bubble (figure l(c)). In 
classical networks the bubble does not participate in the resistance. In a quantum 
situation, however, electron migration through the bubble plays an important role in 
conductivity, only if wave coherence (which is destroyed during a scattering process) is 
maintained for longer than the time which a particle spends in the attached object (li, is 
larger than the size of the bubble). A similar system has been investigated experimentally 
in [5] .  Oscillations of magnetoconductance with the period hc/e were observed in [ 5 ] .  

In order to analyse this problem, we proceed as described above. For the points 
z d z r  on the left-hand side of the wire the Green function is 

G < ( z ,  z r )  = {cos[k(ll - 271 + a234 sin[k(l, - z ' ) ] }  cos(kz)/kW (15) 

where 

W = sin (kl,) - a234 cos ( k l , )  

a234 = - tan(k12) + cot(kl,) - [Isin(kZ,) {cos(kl,) + 2[cos(k14) 

- cos(2nq/qo)] sin(kZ,)/sin(kl,)}~-', 

1, and l 2  are the lengths of wire on the left-hand side and the right-hand side of the bubble, 
l4 is the circumference of the bubble and l3 is the length of the lead connecting the bubble 
and the wire. q denotes the magnetic flux enclosed in the bubble. One can determine 
the conductance as 

%=(e2/h)[lin/2(L1 + ~ ~ ) ~ ] 1 [ [ ~ 1 [ ( 1 +  Ia23412> sinh(211/lin) 

-4 Im a234 cosh(2ll/lin)] - l i n C ( 1  la234 1') 
x [cosh(2Z,/li,) - 11 - Im a234 sinh(211/li,) + +[l - cosh(211/lin)] 

X [l - ~0~h(2l2/li,)]/I~0~(klz)l') 

+terms (11 l2)]//WI2. 
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Figure 3. Dependence of the conductance ($3 on the flux p of a magnetic field for a wire with 
a bubble: (a )  I ,  = I 2  = I 3  = l4 = 10, k' = x/2 with different I , ,  (-, I,, = 100; ---, 

k' = n/2 with different I4 (-, I4 = 10; - - -, I4 = 16; . . . , l4 = 30). 
I," = 20; - .  -, I," = 10; ' ' ' ' > I I" = 5 .  > ---) I , ,  = 2); (b )  I ,  = l2  = 10, l3 = 0, I," = 100, 

Figure 3(a) presents the conductance as a function of q for different l,,. The amplitude 
of oscillations of Yl is reduced with decreasing I,,,. It is also seen that for large I,, the 
average value of (9 increases. It results from the broadening of levels and the increase in 
the density of states at the Fermi level, when I,, decreases. In the second stage (for small 
l,,) a scattering mechanism dominates and the conductivity is reduced. 

The dependence of the conductance on the geometry of the system is shown in figure 
3(b). Changing the length 1 1 ,  12 ,  I ,  or 14,  one changes the distribution of energy levels and 
resonating conditions for transmission of electrons through the system. Therefore, the 
position of peaks of Yl are different in figure 3(b). 

4. Conclusions 

In this paper, we have calculated the Green functions with boundary conditions for small 
electrical networks and then the conductivity from the linear response theory. We 
investigated the influence of inelastic scattering on the quantum interference of elec- 
trons. For a very large system, when its size 1 is larger than the inelastic scattering length 
lin, the conductivity is given by the Boltzmann formula. The quantum nature of the 
system manifests itself for small systems ( I  < I,,). In the quantum case, the so-called dead 
ends play an important role in contrast with classical networks. One can see this for a 
bubble attached to a wire. An experiment performed on a system with such a geometry 
[5]  showed oscillations of the magnetoresistance with a period hc/e. We considered this 
theoretically. For a ring with two attached leads the shape of Yl as a function of q depends 
on the geometry of the system. The basic oscillation period of % is hc/e,  but in many 
cases the second harmonic (the hc/2e component) dominates. It has been shown that 
the shape and periodicity of % depend on the length of inelastic scattering Zi, as well. 

We have made some simplifications, e.g. we neglected impurities. However, the 
method that we used is general and one can also incorporate impurities. For small 
systems with impurities, there is a lack of self-averaging. Cooperons as well as diffusons 
are not fully created and a weak localisation approach fails. We think that the present 
method may be used in such a case. The method can also be an alternative in inves- 
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tigations of tunnelling through a potential barrier, which is in contact with a thermal 
bath. Although we introduced ad hoc the damping parameter li, into the Green function, 
it is well justified in metals (for a small potential barrier). 
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